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Abstract

Changes in the depth of isopycnals are an important indicator of ocean circulation variability, and changes in

the thickness of oceanic layers between these isopycnals affect the ocean inventory of heat and carbon. The

conventional use of potential density to calculate isopycnal heave and layer thickness can mask much of the

variability present in independent temperature and salinity measurements. We present a novel application

of dynamic warping to vertical temperature and salinity profiles by simultaneously computing their optimal

distance to time-averaged profiles, thus quantifying isopycnal heave throughout the water column. Synthetic

tests show this warping method outperforms the conventional density-based method in low stratification and

noisy data, implying the versatility of the novel warping method to calculate heave consistently in a global

ocean dataset.

We first apply this technique to station data from the Hawaii Ocean Timeseries and the Bermuda Atlantic

Time-series Study, yielding heave estimates at monthly resolution over the past 30 years through the full

depth of the ocean. Next, we calculate heave in Argo float profiles of the upper 2000 m of the ocean within

50 km of the Hawaii station, and demonstrate correspondence in heave estimates between these independent

datasets. We then calculate heave in all the Argo data in the North Pacific Ocean, and use a linear model

to measure the contributions of seasonal variability, the El Niño-Southern Oscillation, and decadal heaving

trends to heave in the North Pacific. Seasonal variability and ENSO dominate in the equatorial regions, while

warming trends dominate at high latitudes. We also find coherent heave patterns in the deep Equatorial

Pacific and long-term shifts in the position of the Kuroshio Current. Finally, we calculate the total heat

uptake in the upper 2000m of the high-latitude North Pacific to be 0.88 W m−2. Future work will investigate

the ability of the global Argo array to constrain long-term heaving trends associated with ocean heat uptake,

in an ocean rich with internal-wave and mesoscale-eddy variability.
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Chapter 1

Introduction

Predicting the consequences of anthropogenic climate change requires understanding the ocean. Since 1971,

93% of the excess heat associated with anthropogenic emissions of greenhouse gases has been absorbed by

the ocean (Church et al., 2011). Although the ocean has slowed the rate of global surface warming by

absorbing heat and carbon, this absorption also influences large-scale weather patterns, sea level rise, and

ocean acidification; thus the heat content of the ocean is of major concern. For decades, oceanographers

have studied ocean heat uptake and other phenomena by measuring changes along isopycnals, or surfaces

connecting water with the same density. Isopycnals are influenced by several processes related to both

climatic trends and natural variability, and distinguishing between the two can be difficult. The vertical

movement of isopycnals, or heave, can be influenced by ocean warming as well as changes in winds and ocean

circulation. Quantifying the influence of isopycnal heave on ocean measurements can help characterize ocean

variability on monthly to multidecadal timescales.

However, despite the expectation that heave is present throughout the world oceans, heave is not well-

constrained everywhere. Additionally, conventional methods for measuring isopycnal heave are likely to

mischaracterize heave because they rely on potential density, which can mask changes in temperature and

salinity. We wondered whether we could improve upon conventional methods for measuring heave by creating

a new technique that incorporates temperature and salinity measurements independently. We could then

apply our technique to global ocean data to better quantify heave and the ocean processes associated with

heave throughout the world oceans.
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1.1 Ocean Heat Content and Climate Sensitivity

Perhaps the most elusive number in climate science is the Earth’s temperature response to a change in

radiative forcing, or climate sensitivity. This number is most often expressed as the Earth’s temperature

change after reaching an equilibrium state in response to a doubling of atmospheric CO2. Climate sensitivity

is influenced by major feedbacks in the climate system, including ocean heat uptake. The ocean’s heat

capacity is over 1000 times larger than that of the atmosphere, and the ocean can remove heat and carbon

from the atmosphere and store it for hundreds to thousands of years (Schmitt , 2018). Ocean heat uptake’s

role as a stabilizing climate feedback is thus important for understanding the climate system and predicting

future climate change.

Ocean heat content in both the upper and deep ocean is influenced by processes at the Earth’s surface.

Enhanced radiative forcing and increased surface temperatures increase upper ocean heat content through

air-sea exchanges and wind-driven mixing (Desbruyères et al., 2017). Indeed, the upper ocean (0-700m) has

experienced the largest amount of heat uptake compared to the rest of the ocean, atmosphere, land, and

cryosphere since 1971 (Fig. 1.1). Ocean heat uptake also varies geographically and with depth. This is

due to the spatial variability of winds and water mass formation, which influence the subduction of water

from the surface ocean to the interior ocean. Several studies have shown large heat uptake in the Southern

Ocean, and increasing rates of warming in the deep Southern Ocean due to changes in Antarctic Bottom

Water formation (Purkey and Johnson, 2010; Häkkinen et al., 2016; Desbruyères et al., 2017). There is also

evidence that these changes extend to regions fed by Antarctic Bottom Water, such as the south Pacific and

Atlantic (Desbruyères et al., 2016). It has also been shown that the Southern Hemisphere is responsible for

the majority of global ocean heat uptake, due to its large ocean volume and strong air-sea exchange in the

turbulent Southern Ocean (Desbruyères et al., 2017).
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Figure 1.1: Ocean heat content since 1971 compared to ice, land and the atmosphere. “Upper ocean” is
0-700m depth, and “Deep ocean” is below 700m depth. Heat content is measured in Zetta-Joules (ZJ), or
1021 Joules. Dot-dashed lines indicate uncertainty at the 90% confidence interval for all components. From
the 2013 Intergovernmental Panel on Climate Change Report (Rhein et al., 2013).

There is still much uncertainty in ocean heat uptake estimates due to sparse data coverage. Oceanog-

raphers use vertical profiles of temperature, salinity, and depth to study changes in the ocean. When these

profiles are collected in similar locations over time, this is referred to as repeat hydrography. There are very

few locations in the ocean with regularly sampled repeat hydrography, presenting a challenge for resolving
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high-frequency processes that influence ocean heat uptake. Deep ocean heat content is especially uncertain

due to the difficulty of sampling the deep ocean, yet the deep ocean plays a large role in the overall estimate

of ocean heat content. Models of ocean heat uptake have shown the importance of regularly monitoring ocean

heat uptake down to 4000m depth (Palmer et al., 2011), and the deep ocean (below 2000m) is expected to

play a more prominent role in sequestering heat in the future (Purkey and Johnson, 2010). An extensive

deep-ocean monitoring program is still in the works (Jayne et al., 2017).

However, an existing dataset called Argo has the potential to improve our understanding of ocean heat

uptake. With its unprecedented level of spatial and temporal coverage, it has the potential to resolve the

high-frequency processes associated with surface and deep-ocean heat uptake.

1.2 Argo: A Revolution in Ocean Observation

Argo floats are autonomous floats that adjust their buoyancy to travel up and down in the ocean and measure

attributes such as temperature, salinity, pressure, and velocity (Jayne et al., 2017). These data are collected

using CTDs, instruments that measure Conductivity, Temperature, and Depth. Argo floats record ocean

profiles every 10 days; they drift at 1000m depth for 9 days, then descend to 2000m and rise to the surface

to record a 2000m profile. When the floats reach the surface, they transmit their data to a satellite and

record their location using GPS, then restart the cycle. The floats repeat this process until they run out of

battery after about 5 years (Jayne et al., 2017). With the support of an international coalition of government

agencies, the first Argo floats were deployed in 1999 (Roemmich et al., 2009). In 2007, the Argo program

reached their goal of 3000 active floats, and today there are over 4000 active floats all over the global ocean

(Fig. 1.2) (Roemmich et al., 2009; Argo, 2000).

The Argo program was revolutionary in several ways. Before Argo, ocean measurements were primarily

ship-based, and therefore very costly (Durack et al., 2018). The autonomous nature of the floats reduced

the cost of ocean observation from over $10,000 down to $200 per profile (Jayne et al., 2017). The data is

also freely available in near-real time, making timely oceanography research possible without going to sea

(Roemmich et al., 2009). Additionally, as an internationally-supported program from the start, the Argo

program is one of the largest and most successful feats of international cooperation in all of oceanography
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(Jayne et al., 2017).

Figure 1.2: Locations of Argo floats in July 2017, with contributions to the Argo program by nation. From
(Jayne et al., 2017).

Argo completely changed our understanding of the ocean by providing unprecedented spatial and tem-

poral sampling of the interior ocean. Before the late 1990s, ocean observation was so sparse that estimates

of global sea surface temperature changed depending on what sampling method was used to collect the data

(Rhein et al., 2013). Argo has collected over 1.8 million ocean profiles, more than doubling the number of

available ocean observations (Fig. 1.3) (Durack et al., 2018; Jayne et al., 2017). Data coverage increased the

most in the Southern Hemisphere (Fig. 1.3), which was useful for constraining global ocean heat content

because the Southern Hemisphere absorbs more heat than the Northern Hemisphere (Desbruyères et al.,

2017). Argo float data in the Southern Ocean illuminated the Southern Ocean’s prominent role in ocean

heat uptake and ocean circulation (Roemmich et al., 2009; Gille, 2008).
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Figure 1.3: (A) Contributions to ocean observational data since 1900 by collection method, including ship-
based methods (Bottles, mechanical bathythermographs, expendable bathythermographs, CTDs) and Argo
floats (black). (B) The latitudinal distribution of measurements by collection method. Red lines indicate
the amount of profiles collected per year in thousands exceeding 2000m depth. From Durack et al. (2018).

Argo floats also allowed oceanographers to examine large-scale changes in the interior ocean, such as El

Niño and the movement of water masses, which complimented satellite measurements of sea surface height

and sea level rise (Nerem et al., 1997; Roemmich et al., 2009). The Argo program prompted a large leap

forward in constraining ocean heat content and understanding the ocean’s role in the climate system.

After nearly a decade of global Argo measurements, oceanographers were able to quantify ocean heat

content down to 2000m depth across the globe. The Argo data show evidence of global interior ocean warming

(Fig. 1.4) (Wijffels et al., 2016; Roemmich et al., 2015). The globally-averaged upper ocean experienced

the most warming but also had the highest variability due to its proximity to the surface. In contrast, the
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intermediate depths (500-2000m) experienced steady warming of 0.002 ◦C/yr (Roemmich et al., 2015).

Figure 1.4: (a) Globally-averaged temperature anomaly (◦C) with depth, as detected by Argo from 2006-
2013. (b) Global average temperature trend (◦C/yr) with depth, from three different Argo interpolation
methods (solid lines) with 95% confidence interval (dashed lines). From Roemmich et al. (2015).

However, these ocean heat content changes naturally have large spatial variability, because changes

in ocean heat content are highly dependent on ocean dynamics (Fig. 1.5) (Roemmich et al., 2015). These

dynamics are indicative of the redistribution of heat content rather than long-term trends, and this effect can

only be averaged out with global-scale averaging (Roemmich et al., 2015). This demonstrates the importance

of understanding the dynamical processes that influence ocean heat content. It would therefore be useful to

find a way to use Argo data to study these ocean dynamics alongside long-term trends.
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Figure 1.5: Ocean heat content trends as detected by Argo from 2006-2013, averaged from 0-2000m depth.
Contours represent ±5 W/m2. Modified from Roemmich et al. (2015).

Despite the current Argo product only reaching 2000m, Argo still has considerable untapped potential

to describe ocean dynamics and heat content. Deep-Argo floats that can take measurements down to 6000m

depth are currently being tested and deployed (Jayne et al., 2017). These new floats will be very useful, as

it is estimated that this array could reduce the uncertainty of global ocean heat uptake by nearly six-fold

(Johnson et al., 2015). However, it will take many years to achieve global Deep-Argo coverage. The current

Argo array has collected about a decade’s worth of global ocean data, and the repeat hydrography provided

by Argo is reaching the point where there is enough spatial and temporal coverage to study more high-

frequency processes in the ocean (Katsumata, 2016). There are challenges to doing so because Argo floats do

not represent fixed points of observation; rather, they are constantly moving and collecting data as dictated

by ocean currents. However, if we successfully convert the Argo dataset to a format that describes ocean

dynamics and wave propagation through the interior ocean, we could reach a new level of understanding of

ocean variability and the ocean’s role in the climate system.
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1.3 Interpreting Ocean Data Using Isopycnal Heave

The large-scale mixing processes that affect ocean heat content tend to occur along neutral surfaces or isopy-

cnals, surfaces of constant density (McDougall , 1984). It is useful to study the vertical motion of isopycnals,

or heave, because heave is indicative of several types of oceanic processes. Heave is the dominant process as-

sociated with ocean heat uptake on interannual to decadal scales, especially in the upper ocean (Bindoff and

McDougall , 1994). Heave can also be generated by high-frequency processes that occur naturally. Mesoscale

eddies, swirling whirlpools that form by pinching off from currents, can cause heave through upwelling or

downwelling and transporting water masses laterally across the ocean (Katsumata, 2016). The seasonal

subduction of warm waters into the shallow ocean causes changes in the thermocline and gradual deepening

of isopycnals (Bindoff and McDougall , 1994; Johnson and Marshall , 2002). Seasonal changes in Ekman

pumping and water mass formation cause heave by changing the thickness of the layers between isopycnals

(Jayne and Marotzke, 2001; Kawase, 1987; Nieves and Spall , 2018). Accurately quantifying heave is thus

an important step in studying various natural and climatic ocean processes, and using the Argo dataset to

quantify isopycnal heave on a global scale would provide new insight into ocean variability.

1.4 Previous Methods for Measuring Heave

1.4.1 Heave/Spice Decomposition

Bindoff and McDougall (1994) first proposed a framework for interpreting ocean data in three components:

pure warming or cooling, pure freshening or salinification, and pure heave. The first two components refer

to temperature and salinity changes that occur without a change in density; because the equation of state

for seawater is a nonlinear function of temperature, salinity, and pressure, there are several combinations of

temperature and salinity that yield the same density. These changes in temperature and salinity are now

commonly referred to as water property changes, or spice. Pure heave is defined as the vertical displacement

of isopycnals with no changes in temperature and salinity characteristics.

Several studies have used this heave/spice decomposition to distinguish changes in the ocean. Bindoff
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and McDougall (1994) included a study in the Tasman Sea at 43◦S, which found that seasonal variability

was mostly owing to heave, whereas multidecadal changes were explained by spice. Global ocean data has

shown multidecadal warming at shallow depths (0-700 m) as well as the warming and volume expansion of

subtropical mode waters. This layer expansion produced a large, warming-associated heave signal, especially

in the Southern Hemisphere, along with an enhanced spice contribution to warming in the Southern Ocean

(Häkkinen et al., 2016).

McDougall and McIntosh (2001) created a variation of this methodology to quantify heave due to

mesoscale eddy activity in models, incorporating heave and ocean velocity. A later study used this tech-

nique to study eddies in the global Argo dataset, and showed enhanced heave due to eddy activity near the

Antarctic Circumpolar Current and strong western boundary currents such as the Gulf Stream (Katsumata,

2016).

This method of decomposing ocean variability into heave and spice has been useful for describing ocean

variability in several studies, but it has some concerning drawbacks. Firstly, the distinction between heave

and spice is unclear because it is possible for pure heave to induce spice changes. An isopycnal can heave

for two reasons: due to the movement of a water mass, or due to a change in the properties of the water

mass. Because potential density depends on temperature, salinity, and pressure, the vertical movement of

water can lead to changes in temperature and salinity, especially in the presence of strong temperature and

salinity gradients. Thus separating heave and spice in this way can lead to mischaracterization of heave and

spice.

Secondly, this method measures heave in terms of potential density, which can mask temperature and

salinity variability. Small changes in temperature and salinity may not be detectable after converting to

potential density, but these small variations can be important indicators of both vertical and lateral motion

in the water column. It would therefore be advantageous to instead measure heave based on independent

temperature and salinity measurements, so that vital information will not be excluded.

It is also important to note that this decomposition into heave and spice does not represent a distinction

between natural and climatic variability. Although Bindoff and McDougall (1994) found that spice in the

Tasman Sea played a larger role in density variability than heave on multidecadal timescales and hypothesized

that these spice changes were related to climatic changes, the association between spice and long-term climatic
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changes is not the case everywhere. Other studies have found considerable short-term oscillations in spice,

meaning heave or spice is not inherently associated with either natural or climatic variability (Bryden et al.,

2003). There is nothing inherent about heave or spice that is tied to climatic or natural variability. Spatial-

temporal analyses of the movement of water masses and changes in water mass properties is required to

distinguish natural versus climatic influences on the ocean.

1.4.2 Isotherm Heave

Purkey and Johnson (2013) used a variation of the Bindoff and McDougall (1994) heave and spice decom-

position by focusing on potential temperature rather than density, i.e. measuring isotherm heave instead of

isopycnal heave. They used this approach for a study on Antarctic Bottom Water, because small salinity

changes led to much larger error in heave calculations in the deep Southern Ocean.

The isotherm heave methodology may be an improvement upon Bindoff and McDougall (1994) in that it

uses independent temperature and salinity measurements, rather than conflating the two in potential density.

However, it is limiting in that it expresses all the water property changes (spice) in terms of salinity, and

all the heave is attributed to temperature changes (Purkey and Johnson, 2013). It is unlikely that spice or

heave is influenced solely by temperature or salinity, and isolating each term can exclude potentially useful

information about temperature and salinity changes. Though this approach was useful for handling salinity

noise in the highly unstratified Southern Ocean, it is probably not generalizable for use in the global ocean,

which varies greatly in stratification.

1.4.3 Accounting for the Lateral Movement of Isopycnals

Durack and Wijffels (2010) critiqued the methodology of Bindoff and McDougall (1994) because it did not

account for the lateral movement of isopycnal surfaces. Measuring heave in just the vertical dimension

does not capture the movement of isopycnal surfaces, which are really in three dimensions. Durack and

Wijffels (2010) amended this by computing the time-averaged location of isopycnals in three dimensions and

measuring deviations from their average location. This separated heave into vertical and lateral components,

along with spice. They found significant poleward lateral migration of isopycnals (50-100km) associated with

long-term warming, and showed that changes in isopycnals on this scale can have a large influence on ocean
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circulation (Durack and Wijffels, 2010).

This methodology is noteworthy because it improves on the methodology of Bindoff and McDougall

(1994) by treating isopycnal heave as a three-dimensional phenomenon. We only address vertical heave in

our work, but measuring heave in three dimensions would be a clear next step.

1.4.4 Excluding Heave by Using T-S Space

To avoid the influence of heave and focus only on water property changes, McDonagh et al. (2005) quantified

temperature and salinity changes along isopycnals by computing a least-squares distance between chronolog-

ical temperature-salinity curves. This technique attempts to study spice without the influence of heave, but

as noted earlier regarding the heave/spice decomposition in Bindoff and McDougall (1994), heave and spice

are not completely independent processes. This approach also likely does not completely remove the heave

signal from the spice signal, and is worth noting because it is commonly used in oceanographic studies.

1.5 A Novel Approach

We provide an alternative approach for quantifying isopycnal heave while improving upon previous methods.

Our methodology uses both isohalines and isotherms (surfaces of constant salinity or temperature), thereby

using more information than potential density alone. We also prioritize the applicability of our technique

across the global ocean, to measure heave in various types of stratification and ocean profiles. Our approach

uses a novel application of dynamic warping to measure heave accurately, even with noisy data in regions

with low stratification where small changes in temperature and salinity may be interpreted as large vertical

heave.

Our work also studies the ability of the Argo array to quantify heave in the global ocean. We do this by

comparing Argo data, which is sporadically sampled spatially and temporally, to regularly-sampled station

datasets in the Pacific and Atlantic oceans that reach down to the ocean floor. Comparing the heave estimates

from the float data and the station data help us determine whether the Argo data can sufficiently measure

the heave processes occurring in a particular region. Looking at the variability of heave with depth can also

show how the lower range of the Argo data may be indicative of heave in the deeper ocean, beyond the depth
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of Argo’s sampling range.

The structure of this thesis is as follows. Chapter 2 compares the conventional method for measuring

heave (as described in Bindoff and McDougall (1994)) to the novel methods we developed. Chapter 3 applies

these heave estimation methods to station data near Hawaii and Bermuda to characterize the vertical and

temporal structure of heave through the entire water column. Chapter 4 shows correspondence between

heave estimates from the stations and nearby Argo data, demonstrating the potential to use Argo data to

characterize heave throughout the world oceans. Chapter 5 discusses the application of our novel heave

estimation method to the Argo data in the North Pacific Ocean, including the influence of various natural

and climatic ocean processes on heave and an ocean heat uptake calculation. Chapter 6 summarizes main

takeaways from our work and proposes future directions of study.
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Chapter 2

Measuring Heave

In this study, we explore alternative ways to measure heave because the conventional use of potential density

can mask much of the variability present in independent temperature and salinity measurements. Here

we describe our implementation of the conventional heave-spice decomposition methodology and our novel

techniques for quantifying heave.

The convention in the literature is to define downward movement of isopycnals as positive heave, because

it is associated with a positive temperature change; however, we choose to instead define upward movement

as positive heave.

2.1 Methods

2.1.1 Conventional Potential Density Method

The conventional method for measuring heave, as described by Bindoff and McDougall (1994), measures the

change in pressure along isopycnal surfaces over time. Since pressure is analogous to depth, we interpret heave

in depth units (meters) rather than pressure units (dbar) and convert pressure to depth for our calculations.

We implement this method by converting potential temperature and salinity profiles to potential density

profiles with a reference pressure of 2000 dbar (σ2), and measuring the depth offset between the profiles

(Fig. 2.1). This requires interpolating the sample potential density profile onto the reference (time-averaged)

potential density profile, then calculating the depth difference between the profiles. We interpret this depth

difference as heave. Notice how in low stratification, small changes in density can make a large difference in

heave (Fig. 2.1).
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Figure 2.1: Conventional method for estimating heave, using potential density. Left: Example potential
density profiles derived from the Bermuda Atlantic Time Series. Heave is calculated from the sample profile
(red) relative to the reference profile (black). Right: Heave (blue dotted lines) is the depth offset between
the sample and reference profile.

We also calculate spice in a similar way to the heave calculation. We interpolate the sample temperature

and salinity onto the mean potential density profile, then measure the temperature and salinity change at

each density point.

2.1.2 Dynamic Depth Warping

Our novel method for measuring heave uses a linear programming technique called dynamic warping. Dy-

namic warping is a way of comparing two sequences of linear data that are similar in shape, by identifying

their similar structures and stretching and squeezing the data to achieve an optimal alignment. This warping

technique is most often used with timeseries data (Dynamic Time Warping), to minimize unwanted speed or

temporal offsets as a way of standardizing signals such that their characteristics can be more easily compared
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(Berndt and Clifford , 1994). A common application of Dynamic Time Warping is speech recognition; the

warping algorithm can compensate for varying speeds of speech to recognize structures that represent certain

words.

Dynamic warping also calculates the offsets that are needed to align the signals at every point in the

data. Though most applications of Dynamic Time Warping are not interested in these offsets, they are useful

in our application of dynamic warping to vertical ocean profiles. Instead of measuring temporal offsets at

every time-step in two timeseries, we quantify depth offsets (heave) at every depth of interest in two ocean

profiles. We call our application of dynamic warping to ocean profiles Dynamic Depth Warping (DDW),

because the warping occurs in the depth dimension. This approach is useful because we want to quantify

offsets between ocean profiles purely in the depth dimension, not the changes in the shapes of the profiles

due to temperature or salinity changes (i.e. water mass changes).

DDW accepts two inputs, a sample profile and a reference profile. The reference profile is generally a

time-averaged profile in the region of interest so we can track heave anomalies over time by calculating heave

between many samples and the reference profile. DDW first computes the distance between every data point

in both profiles, forming a distance matrix (Fig. 2.2). DDW then finds the unique path of lowest cumulative

distance through the distance matrix, known as the warping path. The warping path describes the nonlinear

adjustments required to align the profiles in the depth dimension; converting the warping path to depth

coordinates yields the depth offsets (heave) between the profiles in meters through the entire water column.

DDW also has an option to include a penalty term that prevents the warping path from straying too far from

the 1-to-1 line. We find that including a small penalty term in the warping process is useful for handling

noisy ocean data.

By using DDW to compare each profile to a time-averaged mean profile, we can calculate heave through

the entire depth of the water column over time (Fig. 2.3). We set the surface as a closed boundary assumed

to have no heave, and left an open boundary at depth, because the profiles we use in practice are cut off

several hundred meters above the ocean floor. This means the net heave calculated for each profile may

be nonzero. We apply DDW to temperature and salinity profiles independently to measure heave before

incorporating the two with a more advanced version of this technique.
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Figure 2.2: Distance matrix and warping path generated by Dynamic Depth Warping for two temperature
profiles. DDW calculates the distance (color) between every point in the reference, or mean profile (left,
black) and the sample profile (bottom, red). The path of least cumulative distance through the distance
matrix (red) is the warping path. When the warping path deviates from the 1-to-1 line (cyan dashed),
warping was required to align the profiles.
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Figure 2.3: Dynamic Depth Warping. [Left] Mean temperature profile and a sample temperature profile from
one time interval in the Hawaii Ocean Timeseries data, [Center] the aligned profiles generated by dynamic
warping, [Right] the vertical offset (heave) between the two profiles as a function of depth.

2.1.3 Dual-Dynamic Depth Warping

We further develop this novel method for estimating heave by incorporating independent temperature and

salinity measurements into a simultaneous warping algorithm, and call this method Dual-Dynamic Depth

Warping (Dual-DDW). Dual-DDW generates the distance matrices for temperature and salinity indepen-

dently, combines the distance matrices with a weighting to account for the difference in units between

temperature and salinity, then calculates the warping path through the combined distance matrix. This

allows the heave estimate to be influenced by both temperature and salinity without one overpowering the

other.

The weighting between the temperature and salinity matrices is determined by comparing the change in

potential density due to a one-unit change in temperature versus a one-unit change in salinity. The weighting

increases the influence of salinity because salinity changes in the ocean are very small compared to changes in

temperature, but the salinity distance matrix is not weighted so much that small salinity changes overpower
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the warping. This weighting is adjustable, but since we mostly apply this method to the deep ocean where

temperature and salinity changes are small, we keep this weighting consistent for all depths.

Dual-DDW can also detect variations in temperature and salinity that cannot be explained by vertical

heave, but rather indicate horizontal advection. This occurs when a water column is laterally intruded by a

water mass with different temperature and salinity characteristics from the local waters. Figure 2.4 shows

an example of this around 200-400m depth, and the intruding water mass is especially evident in the salinity

profile. When this happens, there is a large jump in the heave estimate in only a few meters depth, which

is nonphysical. This indicates that something other than vertical changes is affecting these profiles. In

this example, Dual-DDW does not quite pick up on the large jump in salinity, but this may be due to the

weighting being calibrated for the deeper ocean where temperature and salinity gradients are smaller.

This technique is useful because it uses information from both temperature and salinity, which allow

for better detection of vertical changes than a solely density-based technique. The presence of a foreign

water mass is typically clear in temperature and salinity profiles, but the density profile may show barely

any change because the water mass will intrude along an isopycnal with density characteristics similar to its

own. Using independent temperature and salinity data rather than only density data is therefore very useful

for distinguishing between vertical heave and horizontal advection. This Dual-DDW approach can potentially

provide more accurate heave estimates and additional insight into the physical mechanisms influencing ocean

measurements.
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Figure 2.4: A comparison of warping methods to calculate heave for one vertical profile. [Left] Mean
temperature profile and a sample temperature profile from the Hawaii Ocean Timeseries, [Center] as left
but for salinity, [Right] vertical offset (heave) between the sample and mean profiles as a function of depth,
calculated by warping temperature, salinity, and temperature and salinity simultaneously with Dual-Dynamic
Depth Warping.

2.1.4 Potential-Density Warping

The final method we use to calculate heave is warping the potential density profiles. The methodology is

the same as temperature warping or salinity warping, only applied to potential density. We include this

technique to make a more direct comparison between our temperature and salinity-based heave calculations

and the potential density-based heave calculations.

2.2 Results

To evaluate the performance of these methods for estimating heave, we heave temperature and salinity

profiles synthetically, use each method to estimate the heave between the synthetically-heaved profiles, and

compare the estimates to the actual synthetic heave that we prescribed. The temperature and salinity profiles
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we use for these synthetic tests are the time-averaged profiles from the Hawaii Ocean Timeseries (HOT) and

the Bermuda Atlantic Time-series Study (BATS), two stations in the north Pacific and Atlantic oceans that

have been collecting monthly CTD profiles down to the ocean floor since the late 1980s. These datasets are

described and analyzed in further detail in Chapter 3, but here we simply use the mean profiles from each

station to test our heave estimation methods with multiple types of ocean profiles.

The mean profiles from these datasets are considered the “reference profiles.” We then add depth offsets

(heave) to these temperature and salinity profiles, ensuring that the heave at the surface is equal to zero.

The heaved profile, which we call the “sample,” is then reinterpolated back onto the original depth space. We

then use each heave method to calculate the heave between the reference and the sample (heaved) profile. For

the conventional potential-density method from Bindoff and McDougall (1994), we calculate both heave and

spice. Sections 2.2.1 and 2.2.2 show the results of these tests for Dual-Dynamic Depth Warping (Dual-DDW),

potential density warping, and the conventional potential density method.

2.2.1 Synthetic Heave Test: Heave and Spice

In our first synthetic tests, we want to (1) measure the accuracy of each heave estimation method, and (2)

determine whether pure heave can cause spice changes. We do this by synthetically creating a smooth heave

profile with depth, by adding together several sine waves and ranging the amplitude between 0-200m, which

is the typical magnitude of heave in the ocean. We then apply this heave to the mean profiles from HOT

(Fig. 2.5) and BATS (Fig. 2.6). Because we know exactly what heave was applied to these profiles, we can

compare the output of each heave estimation method to the actual heave and determine an error. We also

use the conventional method from Bindoff and McDougall (1994) to calculate spiciness; if heave and spice

were truly distinct, the spice in this synthetic test would be zero because we only heaved the profiles.

The first important result from this test is that the pure heave we apply to the HOT and BATS profiles

produces nonzero spice. This provides further evidence that heave and spice as defined in Bindoff and

McDougall (1994) are not completely distinct. As expected, heave causes the most spice at depths with

large salinity and temperature gradients, such as above 500m in the HOT profiles (Fig. 2.5e) and in the

upper 100m and mid-depths between 500-1000m in the BATS profiles (Fig. 2.6e). The heave-induced spice

is also very large, with a nearly 6◦C cooling and 1 salinity unit of freshening for the HOT profiles. The spice
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changes are substantial but smaller in the test with the BATS profiles, with just over 2◦C of cooling and 0.5

salinity units of freshening. However, the spice would likely be larger in the BATS test if the depths with

large synthetic heave matched the depths with strong temperature and salinity gradients, as is the case in

the test using the HOT profiles.

The second result from this test is that the error between the synthetic heave and the heave estimates

for all three methods is very small. The error for the conventional density method is nearly zero, while

the error for the warping methods oscilllates between ±2m. Heave in the ocean is usually on the order of

tens to hundreds of meters, so in that context this small difference in error is negligible. Additionally, the

error for the warping methods is dictated by the depth resolution of the data, and the error can therefore

be adjusted with depth interpolation. Warping occurs when there is a detectable depth offset between the

profiles, but the warping occurs at the same resolution as the depth resolution (in this case, 4m increments).

Profiles can therefore be offset by up to 2m without being detected by the warping method as needing to be

warped, hence the error associated with our warping methods will be half of the depth resolution. To make a

fair comparison between our warping methods and the conventional potential-density method for estimating

heave, we use a depth resolution of 4m to produce an expected error of ±2m for all the synthetic tests and

data analysis in this study.
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Figure 2.5: a) Mean temperature profile (black) from the Hawaii Ocean Time-Series and synthetically heaved
profile (red). b) As a) for salinity. c) As a) for potential density (σ2). d) Synthetic heave applied to the
profiles (blue line) and heave estimated using density warping (green), Dual-DDW (red), and the conventional
potential density method (black). Blue line is thick for visibility, but represents a single heave value at each
depth. e) Spiciness change in temperature (red) and salinity (blue), with ◦C and salinity units on the same
axis.
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Figure 2.6: As Fig. 2.5, using the Bermuda Atlantic Time-series Study (BATS) mean profiles.

2.2.2 Synthetic Heave Test: Adding Noise

Our next synthetic test aims to determine how well the heave estimation methods perform in the presence

of noise. When we apply these methods to real data, the profiles will not be smooth as they were in the

previous synthetic test. Though the real data could have noise or jumps for a variety of reasons, here we

only introduce a small amount of noise in accordance with the accuracy of the CTD sensors used in the

stations and Argo. Various dynamic errors can cause salinity errors ranging from 0.005-0.02 salinity units,

and friction with water flowing through the sensor at a speed of 1 m/sec can cause a slight heating of 0.001-

0.002◦C (noa, 2016). We choose to use the low end of this error for salinity and the high end for temperature

in attempt to balance out the errors between temperature and salinity, but ultimately the larger errors from

salinity have a disproportionate effect on the profiles. We add a uniform distribution of salinity error between

±0.005 units to the salinity profiles, and up to 0.002◦C of heating to each point in the temperature profiles.

There are also differences in error between the three heave estimation methods (Fig. 2.9). When we
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conduct many iterations of this synthetic test with noise, the conventional potential density method has

a much wider distribution of error than the density and Dual dynamic warping methods. The error from

the conventional method ranges from ±30m in intermediate/deep depths to ±100m below 3000m. These

are very dramatic errors in the context of heave in the real ocean, which we expect to be on the order of

50-200m.
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Figure 2.7: Synthetic heave test with noise introduced into the temperature and salinity profiles. a) Mean
temperature profile (black) from the Hawaii Ocean Timeseries (HOT) and synthetically heaved profile (red).
b) As a) for salinity. c) As a) for potential density (σ2). d) Synthetic heave applied to the profiles (blue
line) and heave estimated using density warping (green), Dual-DDW (red), and the conventional potential
density method (black). e) The error between the synthetic heave and the heave estimated by each method.
f) Spiciness change in temperature (red) and salinity (blue), with ◦C and salinity units on the same axis.

The density warping method and the Dual-DDW method yield similar error on average with depth,

but there are some subtle differences between the Hawaii and Bermuda tests. In the case of the synthetic

test using the HOT mean profiles, the density warping error distribution is slightly narrower than that of

Dual-DDW (Fig. 2.9a). Conversely for the synthetic test using the BATS profiles, the Dual-DDW error
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distribution is narrower than that of the density warping method (Fig. 2.9b). This may indicate that there is

variation in the warping methods’ performance for differently-shaped profiles; perhaps there is a relationship

between error distribution and profile stratification. This is an important direction for future study.
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Figure 2.8: As Fig. 2.7, using the Bermuda Atlantic Time-series Study (BATS) mean profiles.

28



Figure 2.9: Distribution of error from the synthetic test with noise at 2500m depth for 100 iterations of
the test. Distributions for each heave estimation method are shown: density warping (green), Dual-DDW
(red), and the conventional potential density method (black). a) For the synthetic noise test using the
Hawaii Ocean Timeseries (HOT) mean profiles. b) For the synthetic noise test using the Bermuda Atlantic
Time-series Study (BATS) mean profiles.

2.3 Discussion

The mean profiles from HOT and BATS are only two types of ocean stratification and do not represent the

entire ocean. However, they help us understand how our heave estimation methods work. Our tests without

noise showed that pure heave could induce spice changes, and therefore the conventional decomposition of

heave and spice is misguided. In the test where we added noise in the temperature and salinity profiles, the

error for all three methods increased, but especially that of the conventional potential density method. More

could be done to quantify these methods’ sensitivity to stratification, but in general the error for each method

increases as stratification decreases. The density warping method and the Dual-DDW method tend to have

similar magnitudes of error for the locations we tested, though this might be different for differently-shaped

profiles in other locations and requires further investigation. Overall, these results show that both of the

warping methods are likely accurate ways of estimating heave, and will probably be much more accurate
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than the conventional method when we apply them to real data.
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Chapter 3

Vertical Structure of Heave in Station Data

Having demonstrated that our methods for calculating heave are reliable with synthetic data, we can now

apply our methods to real data and characterize heave throughout the water column. A good starting point

is to use data collected from stations, because station observations can track changes in the ocean at the

same location over time. There are two stations in the North Pacific and Atlantic oceans that have been

collecting full-depth CTD (Conductivity, Temperature, Depth) profiles at monthly resolution for over three

decades. Calculating heave at these stations from the surface to the deep ocean would be an appropriate

starting point for our data analysis. Characterizing heave in these basins will also be useful information

when we want to expand our analysis to the Argo dataset.

3.1 Data

3.1.1 Hawaii Ocean Timeseries

The Hawaii Ocean Time Series (HOT) is a multi-decadal dataset consisting of monthly physical, chemical

and biological ocean measurements. The program was created in 1988 to provide long-term comprehensive

data records for studying water masses, climatic variability, carbon and potential human impacts on the

ocean. The data was collected at Station ALOHA, which is located at (22◦45’N, 158◦W), about 100 km

North of O’ahu and 50 km away from the bathymetry of the Hawaiian Ridge that would influence nearby

observations (Fig. 3.1). Station ALOHA is located in deep water (4800 m), allowing data to be collected

in large vertical profiles. For this study, we used the temperature and salinity profiles from HOT collected

from 1988-2016.

31



160°W 155°W

longitude

18°N

20°N

22°N

24°N

la
ti
tu

d
e

HOT

Figure 3.1: Location of the Hawaii Ocean Timeseries (HOT) station near the Hawaiian islands.

There are several things we might expect to find when we calculate heave in the HOT data. The seasonal

subduction of warm surface waters has been found to be a very small signal in this region, so the heave

associated with this process should be restricted to the upper 10-120m of the ocean (Karl and Lukas,

1996). Recurring Rossby waves with a period of 100-130 days have been found north of the HOT station

with satellite altimetry data (Mitchum, 1996). The HOT data has also shown interannual changes in the

temperature of deep and abyssal water masses, with variation on 2 and 3-year timescales respectively (Lukas

and Santiago-Mandujano, 1996). These temperature changes were attributed to Rossby waves associated

with the El Niño-Southern Oscillation (ENSO), an irregular oceanic and atmospheric change that occurs

every few years in the Pacific Ocean, as well as interannual wind changes in the regions where these deep

water masses form. These temperature changes were estimated to have been associated with isotherm heave

on the order of 150m in the deep ocean (∼3500m depth) and 300m in the abyssal ocean (∼4500m depth).

The high heave in the abyssal ocean, along with the fact that the HOT station is surrounded by shallower
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waters, indicated that perhaps horizontal advection also played an important role in abyssal water mass

variability (Lukas and Santiago-Mandujano, 1996).

In examining the temporal variability of heave in the HOT data, we choose to examine the upper 3000m

to avoid the aforementioned effects of horizontal advection. We should expect to find annual variability

above 120m depth, higher-frequency variability with a period of 100-130 days, and low-frequency variability

with 2-3 year periods at depth.

3.1.2 Bermuda Atlantic Time-series Study

The Bermuda Atlantic Time-series Study (BATS) began in 1988 with the intent to study biogeochemical

changes in the ocean on seasonal, interannual, and decadal timescales (Michaels and Knap, 1996). The

ocean’s role in the global carbon cycle and heat uptake were two primary motivators for establishing BATS.

The BATS station is located at (31◦40’N, 64◦10’W), 85 km southeast of Bermuda in the Sargasso Sea above

relatively flat topography. The BATS station measurements can reach down to 4200m depth.

The region where BATS is located is characterized by more complex ocean variability than the region

where HOT is located. The Sargasso Sea often experiences local fluctuations on the scale of days to weeks,

as well as the common presence of eddies and the lateral advection of water (Michaels and Knap, 1996).

This high-frequency variability and horizontal advection may prove challenging and even problematic for our

vertical heave analysis; short-lived fluctuations in heave can make it more difficult to examine heave trends,

and horizontal advection could be misinterpreted as vertical heave. In our analysis, however, we address

these concerns carefully.

Seasonal variability associated with the subduction of warm surface waters is expected in the upper few

hundred meters of the BATS data, because the mixed layer is deeper here than near Hawaii and the HOT

station (Michaels and Knap, 1996). Due to seasonal changes in winds in the North Atlantic that influence the

formation of North Atlantic Deep Water, seasonal variability is also expected in the deep ocean in the BATS

region. This water mass subducts into the deep Atlantic near Greenland and travels towards the Equator,

carrying seasonal variability along with it (Johnson and Marshall , 2002). We thus expect to see seasonal

heave in areas containing North Atlantic Deep Water, including the Sargasso Sea (Nieves and Spall , 2018).

Additionally, upper ocean mixing in the BATS data has been shown to correspond with ENSO (Michaels
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and Knap, 1996).

We expect to observe heave on seasonal scales in the surface and deep ocean, ENSO (interannual)

variability in the upper ocean, and high-frequency variability at many depths in the BATS data.

Figure 3.2: Location of the Bermuda Atlantic Time-series Study (BATS) station in the Sargasso Sea near
Bermuda. Various other observing sites are also shown. From Michaels and Knap (1996).

3.2 Methods

3.2.1 Depth Interpolation

The original form of the HOT and BATS data had approximately 10m depth resolution. In line with our

synthetic tests from Chapter 2.2.1, we linearly interpolate the HOT and BATS data to 4m depth resolution.

This makes the error in the warping methods small enough to ensure a fair comparison with the conventional

potential density method.
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3.2.2 Singular Value Decomposition

Singular Value Decomposition (SVD) allows us to characterize heave patterns in the HOT and BATS data.

Each heave estimation method applied to many samples over time outputs a heave matrix H, with rows

representing depth levels and columns representing samples (time).

H can be rewritten as the product of three matrices:

H = UΣV T

where the columns of U describe the vertical structure of heave and the columns of V describe the temporal

structure of heave. The columns of U and V are orthonormal and describe independent patterns of variability

in the data. Σ is a diagonal matrix containing the squared eigenvalues of H, and explains how much each

column of U and V contributes to the variability of the data.

To distinguish the vertical and temporal variability of heave as described by U and V , we tend to refer to

the columns of U as “vertical modes” or “principal components” of heave, whereas we refer to the columns

of V as EOFs (Empirical Orthogonal Functions). Since the first few columns of U and V represent most of

the variability of the heave in HOT and BATS, we focus on these elements for our analysis.

3.2.3 Multi-Taper Spectral Analysis

Spectral analysis describes how strongly different periods of variation are expressed in a signal. It is often

used to understand the periodic processes that influence a system. A spectral peak at a particular frequency

indicates that the data vary at that frequency. Analyzing the heave in HOT and BATS using spectral analysis

helps us identify the periodicity of the heave at different frequencies. Knowing the dominant frequencies of

heave helps us identify which oceanic or atmospheric processes are influencing the data.

We first apply spectral analysis to the first EOF (first column of V ) from the SVD output. The first

column of U and V explain the most variance of the dataset, so conducting spectral analysis on the first

EOF helps to isolate the main heave pattern in the station data and understand its temporal structure. We

then apply spectral analysis to the raw output from Dual-DDW and density warping for a variety of depth
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ranges, to determine how the temporal variability of heave changes with depth.

3.3 Results

3.3.1 Hawaii Ocean Timeseries

In the case of the Hawaii Ocean Timeseries (HOT) station, the main pattern of heave is increasing magnitude

with depth, as shown by the first principal component of vertical heave variability from SVD (Fig. 3.3c).

This pattern explains approximately 73% of the heave variability in the HOT data. Heave in the upper

500m of the HOT data tends to be less than 50m in amplitude, but heave near 2000m can reach 100m in

magnitude, and in the deep ocean near 3700m depth, heave regularly exceeds 100-150m. This magnitude

of heave aligns with previous estimates of isotherm heave required to explain the temperature variability at

these depths (Lukas and Santiago-Mandujano, 1996). The large heave at depth is likely due to the decrease

in stratification with depth in this region (Fig. 3.3a & b). Low stratification allows internal waves and other

disturbances to have a larger vertical influence, because it is easier to heave water vertically when it is not

restricted by a density gradient.

All three heave estimation methods (Dual-DDW, density warping, conventional method) yield nearly

identical heave estimates for the HOT data (Fig. 3.3). Keeping this similarity in mind, all of the temporal

analysis will be conducted using the heave calculated by our novel method, Dual-DDW.
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Figure 3.3: For the heave calculations in the Hawaii Ocean Timeseries: Mean temperature and salinity
profile averaged over 1988-2016, and the three most dominant principal components of heave as generated
by singular value decomposition. E.V. refers to the explained variance of each principal component, as
calculated by Dual-Dynamic Depth Warping. Colors refer to the different methods for estimating heave,
Dual-DDW (red), potential density warping (green), and the conventional potential density method (black
dashed).

When we examine heave at many depth levels, we find that different frequencies dominate the power

spectra at different depths (Fig. 3.4). The seasonal cycle has a very distinct peak at 100m depth, and this

peak disappears below the surface ocean. This is surface restriction expected because the layer in the surface

ocean with low stratification which experiences large seasonal variability (also known as the mixed layer)

is shallow in this region. There is a broad peak around 1 cycle/3 yr frequency that appears around 2000m

depth and continues to be present through 3500m depth. This looks more like a continuum of variability

rather than a peak, indicating there may be multiple processes influencing heave at these depths, or a process

that occurs with inconsistent frequency, such as ENSO. This broad peak at depth could also be related to

wind changes that affect deep waters near Hawaii, as noted in Lukas and Santiago-Mandujano (1996).
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Figure 3.4: Power spectra for heave at many depths, calculated with Dual-DDW in the Hawaii Ocean
Timeseries. Peaks at a frequency of 100 indicate seasonal variability. Tan shading indicates 95% confidence
interval.

Figure 3.5 shows the power spectrum for the temporal empirical orthogonal function (EOF) corresponding

to the first vertical mode of heave for HOT (Fig. 3.3c). In the same way that the first vertical mode explained

73% of the vertical heave variability in the HOT dataset, the first temporal EOF explains 73% of the temporal

heave variability. Examining the power spectrum for this EOF can therefore summarize a significant portion

of the temporal variability in heave from the HOT station. This power spectrum seems to have both high-

frequency and low-frequency structure as expected. There is no peak at the seasonal frequency (100 = 1

cycle/yr), which is expected because the seasonal influence on heave in Hawaii is restricted to the surface

ocean. The EOF represents the heave variability broadly across all depths, and would not capture this small

part at the surface. Finally, there is a broad peak around 1 cycle/3 yr, which is likely related to ENSO.
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Figure 3.5: Power spectrum for the first EOF of heave calculated with Dual-Dynamic Depth Warping in the
Hawaii Ocean Timeseries. A peak at a frequency of 100 indicates seasonal variability. A frequency of 3.65
indicates 100-day period variability. Tan shading indicates 95% confidence interval.

3.3.2 Bermuda Atlantic Time-series Study

In contrast to the HOT station heave, the Bermuda Atlantic Time-series Study (BATS) station heave looks

very different depending on which method was used to calculate heave (Fig. 3.6). The density-based methods

(conventional and warping) determine that heave is nearly constant for all depths, and this vertical pattern

represents 61% of the heave variability. In contrast, Dual-Dynamic Depth Warping finds a vertical mode

with a large increase in the amplitude of heave around 1500-2500m depth, and this mode explains about 58%

of the heave variability calculated by Dual-DDW. Though these modes explain about the same percentage

of variance in the BATS heave data, there is a stark discrepancy between the heave characterizations.
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Figure 3.6: As Fig. 3.3, for the Bermuda Atlantic Time-series Study.

After examining specific examples in the BATS heave data, however, there is a logical explanation for

this discrepancy. It is related to the high amount of lateral advection in the Sargasso Sea where BATS is

located (Michaels and Knap, 1996). Figure 3.7 and 3.8 show an example of a measurement from BATS,

where from approximately 2000-2500m depth, there is a large divergence between the heave estimates from

the Dual-DDW method and the density warping method (Fig. 3.7a). The heave estimates from temperature

and salinity are also shown, as the Dual-DDW method is a combination of these two techniques.
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Figure 3.7: One CTD cast from the BATS dataset to demonstrate discrepancy between the density and
temperature/salinity heave calculations. a) Heave estimates from Dual-DDW (red), density warping (green),
temperature warping (black), and salinity warping (blue). b) Time-averaged temperature profile from BATS
(reference profile; dotted line) and the sample temperature profile (solid line), with colors indicating which
depths correspond to heave up (red) or down (blue) as calculated by Dual-DDW. c) As b), for salinity. d)
As b) and c), but for potential density profiles, and the colors correspond to the heave as calculated by the
density warping method.

Around 2300m depth, there is an abrupt jump in the temperature and salinity profiles (Fig. 3.8b,c).

This cannot be explained by vertical movement; the water below would have had to heave up, and the water

above would have had to heave down, which does not make physical sense. This jump is more likely due

to the horizontal intrusion of a water mass with different temperature and salinity properties from the rest

of the water column, which is a very different process from vertical heave. Luckily, our temperature and

salinity-based warping methods can make this distinction. The temperature warping, salinity warping, and

Dual-DDW methods all output a heave estimate that jumps from a large positive heave (300-1000m) to

negative heave within one unit of depth change. We call this a failure because that massive jump in heave is

nonphysical. The failure of those warping methods is an extremely useful feature; it distinguishes what can

and cannot be explained by vertical heave.
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In contrast, the potential density profile barely detects any kind of change, and simply interprets the

entire segment of the profile as being heaved slightly upward (Fig. 3.8d). The density-based methods

completely miss this change in temperature and salinity, because the reduction in density due to warming

and the increase in density due to salinification compensate each other. Hence, the use of potential density

is likely to misrepresent horizontal advection as vertical heave, or miss this variability completely. This

example is typical of most of the BATS samples, and other samples have even more jumps in temperature

and salinity due to horizontal advection. It is therefore especially important in this region to understand

the influence of the horizontal movement of water in addition to vertical heave.

Figure 3.8: As Fig. 3.7, focusing on the depths where the warping methods fail. The abrupt changes in
temperature and salinity cannot be explained by pure vertical heave, rather are likely indicative of horizontal
advection.

The differences in how Dual-DDW and the two density methods handle horizontal advection in their

heave calculations naturally causes differences in the heave power spectra. For all three methods, the power

spectra remain nearly identical until 1500m depth. This depth is where the Dual-DDW method usually

begins to detect small temperature and salinity changes due to horizontal movement of waters, and produces

extremely large heave that is nonphysical. The effect of these failures can be observed in the power spectra for

42



the first EOF of heave derived from Dual-DDW and density warping (Fig. 3.9). The main difference between

these spectra is that the density warping spectrum has a strong seasonal peak that is not pronounced for

Dual-DDW heave. The density warping spectrum also has a broad peak around the 2-3 year period, which

shifts toward 3-4 year period for Dual-DDW heave. There are also two peaks in the Dual-DDW spectrum

around frequencies of 1.8 and 2.2 (equivalent to periods of 5.5 and 6.7 months) that are not present in the

density warping spectrum.
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Figure 3.9: As Fig. 3.5, for the Bermuda Atlantic Time-series Study. Power spectra for the first EOF of
heave calculated with Dual-Dynamic Depth Warping (left) and the density warping method (right). Tan
shading indicates 95% confidence interval.

It is difficult to tell whether the spectra for either of these techniques represent the vertical heave that

is actually occurring in this location. The structures present in the Dual-DDW spectrum may represent

the periodicity of the horizontal intrusions into the BATS data, but it is hard to quantify how much of an

effect this has on the spectra. The structures in the density warping may be broadly indicative of the heave

in BATS because they do not detect the horizontal movement, or the heave may be incorrect. However,

the upper 1000m of heave are approximately the same for all the heave estimation methods, so we can be

more confident that the heave we calculated at these depths are indicative of the vertical heave in the BATS
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region.

When we examine the spectra for several depths in BATS, we see several types of variability related to

different processes that are known to occur in this region. First, we expect a seasonal cycle at the surface

due to seasonal subduction of warm surface waters, which is displayed in Figure 3.10 as a very prominent

peak in at 100m depth. We also see a broad peak near ENSO frequencies at 500m and 1000m depth, which

may correspond to the ENSO-related mixing mentioned in Michaels and Knap (1996).

We also expect to see seasonal variability in the deep ocean at the BATS station, which is related to

seasonal wind changes and deep water formation in the North Atlantic. The depth range of North Atlantic

Deep Water in this basin is below 2000m. Indeed in the density-warping spectral diagrams for 2000-3500m

depth, a seasonal peak appears, which may be indicative of this deep water formation process. However, it is

still uncertain whether this variability is due to vertical heave or horizontal advection, or some combination

of both, because the density warping method does not discriminate between the two. Further work is needed

to understand the vertical and lateral contributions to variability in this region.
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Figure 3.10: Power spectra for heave at many depths, calculated with density warping in the Bermuda
Atlantic Time-Series. Peaks at a frequency of 100 indicate seasonal variability. Tan shading indicates 95%
confidence interval.

3.4 Discussion

In applying our heave estimation methods to the HOT and BATS station data, we characterized the vertical

and temporal variability throughout the entire depth of the ocean in these two locations. For both the

HOT and BATS station data, the power spectra for heave make sense with both the local and larger-scale

dynamics at play in each region. A surface seasonal cycle is clear in the upper 100m in both locations as

expected, but more importantly we identified frequencies at depth that indicated teleconnections to other

regions of the ocean thousands of kilometers away. Both locations contain ENSO periodicity; ENSO-related

Rossby waves may cause heave in the deep ocean in HOT, while upper ocean mixing cycles that vary with

ENSO are present in BATS. HOT and BATS are also both affected by changes in winds in the polar regions

to form deep water masses that feed into the stations’ ocean basins. For HOT, these are interannual (2-3 yr)
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wind changes in the Southern Ocean where Pacific Deep Water forms. For BATS, there is a seasonal cycle

at depth very likely to be related to the annual variability of North Atlantic Deep Water formation, which

takes place near Greenland. Pacific Deep Water formation near Antarctica likely has a seasonal cycle as well,

but it may not be as strong as the seasonal variability of North Atlantic Deep Water formation. Also, BATS

is more likely than HOT to detect such a seasonal cycle, as BATS is much closer to Greenland than HOT

is to Antarctica. Being able to detect these basin-scale processes at depth with our novel heave estimation

methodology is very promising, and shows potential for extending our analysis to the global ocean.

There are likely to be some issues with expanding our analysis as-is near BATS. We found through the

repeated failure of the Dual-Dynamic Depth Warping method in the BATS data that there is probably a

signficant amount of horizontal advection in this region, and this variability would not be appropriately

explained by pure vertical heave. Before attempting to expand our heave analysis across the North Atlantic,

it would be optimal to first characterize these horizontal shifts, their timing, and their sources. It may help

to modify our methodology by calculating heave in three dimensions to account for the lateral movement of

isopycnals, as suggested in (Durack and Wijffels, 2010). Early reviews of the BATS program emphasized

the need to address variability in the Sargasso Sea in three dimensions, to accurately capture the competing

processes in the region (Michaels and Knap, 1996).

More recommendations for addressing these issues and applying our analysis to the North Atlantic are

discussed in Future Directions in Chapter 6.
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Chapter 4

Station vs. Argo Heave Comparison

After characterizing heave throughout the water column at two points in the ocean, we want to expand our

analysis to a larger area of the global ocean by incorporating the Argo dataset. To determine whether the

Argo data measure heave similarly to stations, we compare heave estimates between the station and the

Argo profiles that were collected near the station.

We choose to focus only on the Hawaii Ocean Timeseries station (HOT) and the Argo profiles near Hawaii

because there are many complications with the Bermuda station (BATS) and nearby Argo. As mentioned

in the previous chapter, the region where BATS is located is prone to lateral mixing. Without a means to

understand the horizontal variability in this region, it would not make sense to compare BATS and nearby

Argo, which are more spread out and likely to be influenced by these various horizontal processes.

Even if we understood these horizontal processes, the comparison would be challenging because there is

very little Argo data near the BATS station. Since 2004, there have been only 6 Argo profiles collected within

40 km of the BATS station and 25 profiles within 100 km, compared to 38 and 85 profiles within 40 km and

100 km of the HOT station. The low number of nearby profiles, especially within 40 km distance, makes

it difficult to determine whether there is a correspondence between the BATS station and the Argo data.

Argo floats farther from the station are more likely to experience high-frequency internal waves at different

times than the station or that the station might miss altogether. This effect is especially problematic in the

Sargasso Sea, where local, high-frequency processes are very common. This contributes to our decision to

only evaluate the HOT station.
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4.1 Methods

Our goal is to measure the correspondence between the heave estimates from the HOT station and nearby

Argo floats. This is challenging because the Argo and the station are in different locations, and their samples

were collected at different times.

To do this comparison, we restrict the Argo floats to only those within 50 km distance from the HOT

station. We then compute heave using all three methods. We make sure to compute heave in the Argo data

relative to the same profiles we used for the HOT data, i.e. the HOT mean temperature and salinity profiles,

to ensure we are comparing against the same baseline for both datasets. Then for each Argo profile, we find

the measurement from the HOT data that was collected the closest in time to the Argo measurement, and

compute the difference in heave between those two measurements. We do this instead of interpolating the

HOT data, because trying to increase the resolution of a monthly dataset may not be representative of what

happened in this location, especially if there are internal waves propagating through the ocean here.

This outputs heave residuals between the Argo profile and the HOT profile as a function of depth. We

repeat this for all the Argo profiles within 50km of the HOT station and evaluate the correspondence between

the datasets.

4.2 Results

4.2.1 Vertical-Temporal Comparison

Despite being sampled in different locations and times, the match between the HOT station and nearby

Argo seems to be quite good. At 400m depth, 59% of the Argo profiles have heave within 20m of that of the

HOT station and 97% are within 50m. At 1400m depth, 41% of the Argo profiles have heave within 20m of

that of the HOT station and 81% are within 50m. While the deep ocean heave match is not quite as good

between the station and Argo, we expect heave to be larger at depth than near the surface based on the first

principal component of heave in HOT (Fig. 3.3c), so we expect the residual of heave between the station

and the Argo to increase with depth as well. For heave on the order of 100-150m at depth, being within
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20-50m of the station heave is reasonable, especially since the collection locations are slightly different and

the collection times can be very different.

The residual between the station and the Argo data can also depend on the temporal difference between

the measurements, indicated by the size of the circles in Figure 4.1. The temporal differences between the

Argo and station measurements range from less than one day to nearly six weeks; differences of multiple

weeks can easily have a large effect on heave.

Figure 4.1: Map of the Hawaii station (red star) and the nearby Argo profile collection locations (circles).
Circle color corresponds to the residual between heave calculated for that Argo profile and the HOT station
at 400m depth [left] and 1400m depth [right]. Circle size indicates temporal correspondence; smaller circles
indicate Argo profiles that were collected at very different times from the closest HOT measurement in time,
can be up to 6 weeks. Heave generated by Dual-DDW.

For each of the three heave estimation methods (Dual-DDW, density warping, density conventional) we

generate a plot like Figure 4.2, showing the heave calculated in HOT and Argo for many depths over time.

From this, we can calculate the residual between each Argo profile and the closest temporal HOT profile

(Fig. 4.3).
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Figure 4.2: Heave at several depths generated by Dual-Dynamic Depth Warping in the HOT station (red
line) and nearby Argo measurements (blue dots). Shade of blue for Argo indicates the distance between the
HOT station and the Argo measurement in kilometers.
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Figure 4.3: [Left] Residuals between the HOT station and nearby Argo heave. [Right] The mean and standard
deviation of heave for each depth level. Heave generated by Dual-Dynamic Depth Warping.

Looking at the mean and standard deviation of the residuals taken over time for many depths, the choice

of heave estimation method makes very little difference (Fig. 4.4). The mean of the residuals for each

method is very close to zero for all depths, which should be the case for averaging across many Argo profiles,

so there does not appear to be a systematic bias in heave for any of the methods. There is a large increase

in the standard deviation below 1000m depth, however, and this is likely due to a large decrease in sample

size since less than half of the Argo profiles near Hawaii reach past 1000m.
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Figure 4.4: Difference between heave calculated at the HOT station and Argo near Hawaii, as a function of
depth (Argo heave minus HOT heave). [Left] Heave calculated by Dual-DDW. [Center] Heave calculated by
density warping. [Right] Heave calculated by the conventional potential density method. “Mean all depths”
is the mean of the red bars for the entire water column, and “std all depths” is the mean standard deviation
across all depths.

Though the differences between the methods are small, the residuals between HOT and Argo calculated

by the Dual-DDW method have a slightly larger standard deviation than those calculated by the density-

based methods. This is likely because the Dual-DDW method produces more variable heave than the other

methods (Fig. 4.5). In the depth range of the Argo data, the heave calculated by Dual-DDW usually has a

greater standard deviation than the heave calculated by the density-based methods, in both the HOT station

and the nearby Argo. If the heave estimates are more variable to begin with, the residuals between HOT and

Argo will also be expected to have greater variance. This could imply that the Dual-DDW method is noisier

than the other methods, though Dual-DDW calculates less variable heave than the other two methods in the

deep ocean in HOT (below 2500m depth) (Fig. 4.5a). The contributions of temperature and salinity may

help Dual-DDW explain more heave. We recommend further quantifying the noisiness of the Dual-DDW

method as a direction for future study. At least near the HOT station, however, this difference in variance
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does not seem to make a significant difference in the residuals between the three heave estimation methods.

Figure 4.5: Standard deviation of heave as a function of depth, in a) the Hawaii Ocean Timeseries (HOT)
data and b) the Argo data near the HOT station. Lines indicate the heave calculation method: Dual-DDW
(red), density warping (green), and the conventional density method (black dashed). The depth range for
Argo is less than that of HOT, and therefore does not extend to depth.

4.2.2 Distance-Dependent Correlation

We also measure the correlation between the Argo float heave and the station heave as a function of distance

(Fig. 4.6). We do this by expanding the distance threshold for accepting Argo profiles by 5 km at a time and

computing the heave correlation between the station and the incrementally expanded Argo dataset. There

should be a gradual decrease in correlation with distance just from adding more data points (Fig. 4.7), but

the drop in correlation between 30-70km distance is sharper, especially below 1000m depth. This indicates
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a real distance-dependence.

Figure 4.6: Correlation between the HOT station and Argo heave as a function of distance, with heave
estimated by [left] Dual-Dynamic Depth Warping, [center] density warping, and [right] the conventional
method. [Top row] Correlation as a function of distance and depth. [Bottom row] Correlation as a function
of distance, with the mean for 200-1000m (red line) and the mean for 1000-1700m (black line).

The correlation as a function of distance and depth was nearly identical for all three methods, but

Dual-DDW seemed to produce slightly higher correlation at mid-depths (400-600m) compared to the other

heave estimation methods. This could be related to the reversal of the salinity profile in this region, which

occurs near these depths. Our hypothesis is that because the Dual-DDW method takes into account the

shape of the entire temperature profile and the entire salinity profile, the Dual-DDW method can use extra

information from the relatively complex structure of the salinity profile to calculate heave more consistently.

The performance of Dual-DDW compared to the density-based methods in non-monotonic environments

warrants further study.
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Figure 4.7: [Top] Number of Argo profiles as a function of distance and depth. [Bottom row] Number of
Argo profiles as a function of distance, with the mean for 200-1000m (red line) and the mean for 1000-1700m
(black line).

4.3 Discussion

This is the first time the Hawaii Ocean Timeseries has been compared to nearby Argo data. Overall the

match between Argo and HOT seems reasonable for all three heave calculation methods. The residuals

between the station and Argo heave had no systematic biases with depth, and the magnitude of the residuals

was reasonable for the most part. The match also depended on distance, supporting the idea that Argo
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floats farther from the station are subject to high-frequency changes, such as internal wave activity, which

can alter their estimates of heave. There were some slight differences between the heave estimation methods

in the distance correlations that may imply the methods respond differently to different shapes of ocean

profiles. Future work should test a wider variety of ocean profiles and heave to better quantify the ability of

the Dual-DDW method to capture heave variability compared to the two density-based methods.

The match between these independent datasets seems reasonable, but this is only one point in the ocean.

It may be helpful to investigate the correspondence between Argo and another stationary dataset in this

region, such as the TAO array in the Equatorial Pacific. Desbruyères et al. (2017) found that the best

correspondence between ship hydrography and Argo data was in the North Pacific basin, so it would be

interesting to conduct a similar analysis with the Bermuda station and nearby Argo after accounting for

horizontal variability, to see whether the correspondence is worse in the Atlantic.
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Chapter 5

Spatial Patterns of Heave in North Pacific Argo

Having shown reasonable agreement between heave estimates from the Hawaii Ocean Timeseries and nearby

Argo floats, there is significant potential for our analysis to extend to the Argo array in the rest of the

North Pacific Ocean. We focus our analysis on the Argo data in the North Pacific for three reasons: (1) we

showed correspondence between station and Argo heave near Hawaii, which is located in the center of this

basin; (2) the North Pacific is the widest basin with the least complicated topography out of all the ocean

basins on Earth, thus making it ideal for tracking the unobstructed, large-scale propagation of waves; (3)

the Equatorial Pacific is likely to have coherent variability associated with the El Niño Southern Oscillation

(ENSO). In this preliminary analysis, we use our novel method, Dual-Dynamic Depth Warping, to compute

heave in the Argo data for the entire North Pacific Ocean. We then use this heave data to characterize both

natural and climatic changes in the North Pacific.

5.1 Argo Data Product

The Argo data used in this study are interpolated to standard depth levels, which results in the depth

resolution ranging from 10-100m (Argo, 2000; Forget , 2016). This is because these data were used to

constrain the ocean state estimate in a climate model, ECCO version 4, and were thus depth-interpolated

onto the ECCO grid (Forget et al., 2015). In line with our synthetic tests and the rest of our previous

analysis, we linearly interpolated the Argo data to 4m depth resolution.
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5.2 Methods

5.2.1 Argo Data Analysis

Characterizing the variability of heave was relatively simple in the HOT and BATS datasets because those

data were collected from a single geographic point. In contrast, the Argo data in the North Pacific contains

hundreds of thousands of ocean profiles collected sporadically in time and space across an entire ocean basin.

We therefore use some compression techniques and averaging to characterize the spatial variability of heave

in Argo.

We group the Argo floats into 4x4-degree boxes and treat each box as an individual dataset of profiles

collected from the same location. We then apply Dual-Dynamic Depth Warping to each Argo float individ-

ually relative to the mean profile in each grid box, and average the heave within each grid box at each depth

and time interval (every month from 2007-2016). We intentionally select a similar temporal resolution to

the HOT data for the sake of comparison. This approach allows us to calculate heave for individual profiles

while reducing the size of the dataset to observe broader patterns of variability. We use these 4x4-degree

boxes for the rest of the Argo analysis, and there are approximately 500 of these boxes in total in the North

Pacific Ocean. We also restrict our analysis to the boxes with over 50% temporal coverage and a maximum

time interval without data of 1 year or less.

After calculating heave and binning the heave data in Argo, we only use the heave data between 40m-

1850m depth rather than the full Argo range of 0-2000m. At the very surface, Dual-DDW often fails (i.e.

produces very large heave values) because the surface ocean has large temperature and salinity changes that

are not indicative of vertical heave. At depth, many heave profiles are automatically cut off above 2000m

depth; if a profile experiences 150m of upward heave at 2000m depth, the heave profile ends at 1850m since

there is no more data below 2000m to fill in the rest of the heave profile. Since heave at 2000m depth is

typically on the order of 100-150m, we only examine heave data down to 1850m depth.
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5.2.2 Hawaii Station vs. North Pacific Argo

Our first test in determining whether we can reliably use heave from the Argo data to study oceanic processes

is to look at the structure of the heave relative to a single reference point, the Hawaii Ocean Timeseries (HOT)

station. Our approach is similar to what we used in Chapter 4, when we calculated the residual between the

heave estimates from the HOT station and nearby Argo. In this analysis, rather than the Argo data being

treated as individual profiles, the data is binned into 4x4-degree boxes and 1-month temporal resolution.

Therefore, comparing the Argo data to the HOT measurement closest in time to the Argo temporal bin

would not be appropriate. We instead interpolate the HOT data temporally to match the Argo data, then

compute the heave residual by subtracting the HOT heave from the Argo heave in each geographic bin at

many depths.

5.2.3 Linear Model

To study various oceanic processes in the North Pacific Argo data, we fit a linear model to the heave data.

Our model consists of three predictors corresponding to processes we expect to be detectable in the North

Pacific Ocean. The first predictor is the heave trend measured over the period of 2007-2016, which indicates

gradual changes in heat content that are likely related to climate change. The second predictor is the El

Niño Southern Oscillation (ENSO). ENSO is an irregular, naturally-occurring phenomenon that has a large

impact on the global climate. We use the Nino 3.4 index to represent ENSO variability (Rayner et al., 2003).

The third predictor is the seasonal cycle, which corresponds to natural changes in solar radiation at the

Earth’s surface and can cause changes in winds and ocean properties. Seasonality is also associated with

waves that propagate through the ocean in different ways. To ensure that our model captures all the phases

of the seasonal cycle, we use two phases of the seasonal cycle that are offset by 90 degrees.

Our model is as follows:

H = β0 + βTXT + βENSOXENSO + βS1
XS1

+ βS2
XS2

where H is heave, β0 is an intercept term, βTXT is the trend component, βENSOXENSO is the ENSO

(Nino 3.4) component, and the seasonal component is composed of the two terms βS1XS1 and βS2XS2
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representing the sine phase and cosine phase of the seasonal cycle, respectively. These two phases of the

seasonal cycle are separate terms in our model, but the sum of their slopes form an overall slope representing

the association between heave and seasonality, βS = βS1
+ βS2

.

The ENSO and seasonal components are normalized to unit variance such that the slopes βENSO and βS

are expressed in meters of heave per unit variance. The trend, βT , is expressed in meters of heave per year.

More terms could be included in this model, but we choose to keep the model simple to avoid overfitting

and to investigate the Argo heave data’s ability to characterize large-scale processes.

5.2.4 Multi-Taper Coherence Analysis

Multi-taper coherence analysis is used to compare two timeseries at several frequencies. It also calculates

phase offsets between timeseries, which helps to measure the propagation of periodic processes. Applying this

analysis to heave in Argo is useful because this analysis can detect coherent wave processes across different

locations, even if those locations experience the phases of the wave differently.

In the Argo data, we selected a depth level and calculated coherence between the heave from a chosen

reference grid box and every other grid box at that depth. We repeated this for several depths and frequencies,

and examined the phase offsets in coherent regions to look for propagating waves. Coherence analysis goes

one step beyond the capabilities of the linear model, which can only show correlations between heave and

ocean processes. Coherence allows us to not only identify geographic regions where a periodic process is

present, but also to visualize propagating waves in these regions through phase offsets.

5.3 Results

5.3.1 Hawaii Station vs. North Pacific Argo

We first compare the heave estimates in the North Pacific Argo data and the Hawaii Ocean Timeseries (HOT)

station, to determine whether our Argo heave calculations are consistent with the expected variability and

mean state in the North Pacific (Fig. 5.1).

The variance of the residual between the Argo and HOT heave estimates increases with distance away
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from the HOT station, which is expected because regions that are farther from the HOT station are more

likely to experience different atmospheric and oceanic influences than the HOT station. There are especially

large increases in the variance of the residual in regions where eddies often form, particularly in the Kuroshio

Current near Japan and near the Equator (Katsumata, 2016). Eddies produce localized, dramatic variations

in heave, so it makes sense that regions with large eddy activity have a highly variable heave residual with

the HOT station. The enhanced variance near the Equator disappears around 800m depth, but the variance

near the Kuroshio Current persists to at least 1850m, indicating how strong eddy activity in this western

boundary current can influence the deep interior ocean.

The mean heave offset between Argo and HOT also matches the structure of ocean circulation in the

North Pacific (Fig. 5.1). This time-averaged heave offset can be used to calculate the mean slope of isopycnals

in the North Pacific. Since we define positive heave to be upward, a positive mean heave residual relative to

the HOT station indicates the isopycnals in that region are shallower on average than the isopycnals near

Hawaii; shallower isopycnals usually correspond to colder temperature profiles, therefore we show positive

heave residuals in blue. The converse is true for a negative mean heave residual, which corresponds to deeper

isopycnals and typically warmer water. The lower plot in Figure 5.1 clearly shows the structure of the North

Pacific Gyre at 500m depth, which is influenced by the warm, northward-flowing Kuroshio Current on the

western boundary and the eastward-flowing Kuroshio Extension, and the cold return flow of the California

Current on the eastern boundary (Reid , 1997). The mean heave residual between HOT and Argo from

1000-1800m depth also seems to reflect the weaker and more complex circulation in the deep North Pacific.

We thus know that the estimates of heave in the North Pacific Argo from Dual-Dynamic Depth Warping

produce the large-scale structures of heave that we expect. Having established the basic structures of heave

in the North Pacific, we can continue our analysis to study more complex large-scale processes.
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Figure 5.1: Heave residual between the North Pacific Argo data and the Hawaii Ocean Timeseries (HOT)
station variance (top) and mean (bottom), at 500m depth.
Positive mean heave residual (blue) represents regions with shallower isopycnals on average compared to the
HOT station, which typically corresponds to colder water. Negative mean heave residual (red) indicates
deeper isopycnals and typically corresponds to warmer water compared to the HOT station.
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5.3.2 Linear Model

Using our linear model for heave, we quantify seasonal variability, the El Niño Southern Oscillation (ENSO),

and heave trends in the North Pacific. We study the vertical structure of these variables by regressing them

onto heave at many depths. We also identify some local changes using additional coherence analysis.

Considering that heave data can be quite noisy, the model fit is quite good in general, and seasonal

variability has the largest association with heave on average in the upper 200m of the North Pacific Ocean.

However, the model fit decreases with depth. This could be due to the greater magnitude of heave at depth,

which could increase the magnitude of noise in the heave data. The worse fit at depth may also be related to

the reduction in data coverage below 1000m depth, which could cause the data to be noisier. Additionally,

considering that seasonality and ENSO tend to occur largely in the surface ocean, it is reasonable that the

fit of our model generally decreases with depth.

The model fit and expression of each component of the model also varies greatly with location. In this

section we discuss both small and large-scale variations in the contributions of seasonality, ENSO, and trends

to heave in the North Pacific Argo data.

Changes in the Kuroshio Current

The first result from our linear model is a distinct feature off the coast of Japan between 140-340m depth

(Fig. 5.2). There is a strong positive heave trend at 28◦N, and a strong negative heave trend at 32◦N. The

magnitude of these opposing heave trends relative to the surrounding regions and the way the trends extend

eastward imply they represent changes in the Kuroshio Current. The Kuroshio Current transports warm

water from the equatorial regions to the mid-latitudes, and is therefore associated with negative heave on

average (The negative heave of the Kuroshio can also be seen in the mean heave state in Figure 5.1). A

positive heave trend in the south and a negative heave trend in the north implies that the Kuroshio Current

is shifting northward during 2007-2016.
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Figure 5.2: Heave trend in m yr−1 in the region of the Kuroshio Current, calculated by our linear model for the
time period 2007-2016. Black dots indicate locations where the trend was significant at the 95% confidence
level. Shift in the Kuroshio Current indicated by the large meridional heave gradient near (32N,145E).

However, our heave calculations also suggest that the Kuroshio Current responds to ENSO and seasonal

variability, which is consistent with previous findings (Qiu and Lukas, 1996). The ENSO signal is present in

the Kuroshio region from 140-240m depth, indicating that ENSO may influence the position of the Kuroshio

Current (Fig. 5.3). The association between heave and ENSO is the opposite sign of the heave trends in this

region. Additionally, the heave trends and ENSO variability in the Kuroshio are overlain by strong seasonal

variability (Fig. 5.4). The seasonal association with heave is about three times greater in magnitude than

the other components of the model in this region, and is present from the surface to 280m depth.

The case of the Kuroshio Current is a good example of how our linear model can reveal the contributions

of climatic and natural processes to heave, even when their contributions are opposing signs, varying mag-

nitudes, and occur on different timescales. Also, being able to view changes at the relatively small spatial

scale of an individual current indicates the potential to use this approach for detailed heave analysis in Argo.
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Figure 5.3: Heave associated with the El Niño-Southern Oscillation in m heave/unit variance in the region
of the Kuroshio Current, calculated by our linear model. Black dots indicate locations where the association
was significant at the 95% confidence level.
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Figure 5.4: As Fig. 5.3, for heave associated with seasonal variability in m heave/unit variance.

El Niño-Southern Oscillation and Coherence Analysis

Our linear model results show that ENSO has a strong correlation with heave in the North Pacific, especially

in the surface ocean. At 60m depth, there seem to be two regions in the North Pacific that respond to ENSO

in opposite ways (Fig. 5.5). On the Equator from 150E to 90W, a unit variance increase in ENSO (i.e. an

increase in the Nino 3.4 index, indicating a shift towards the El Niño phase of the oscillation) is associated

with about 10-20 meters of downward heave, or warming. The eastern boundary of the North Pacific seems

to respond to ENSO in a similar way. In the western Pacific, a unit variance increase in ENSO is associated

with about 5-15 meters of upward heave, or cooling.
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Figure 5.5: The slope for the El Niño-Southern Oscillation component of the heave model at 60m depth.
Slope is expressed in meters of heave per unit variance in the Nino 3.4 index. Black dots indicate locations
where the ENSO component of the model was significant at the 95% confidence level.

Coherence analysis reveals that these are two coherent regions that experience ENSO in opposite phases

(Fig. 5.6). Coherence analysis identifies the Equator and eastern boundary of the North Pacific as experi-

encing ENSO variability together (Fig. 5.6a), and the western Pacific experiencing ENSO at a 180-degree

lag behind the equatorial region (Fig. 5.6b). It seems that the coherence calculation reveals more of the

ENSO pattern is coherent than can be identified using correlation in the linear model. Coherence analysis

therefore seems to provide a more complete description of the ENSO-related heave variability in the North

Pacific.

The downside to coherence analysis is that it calculates coherence for a single frequency. For studying

an irregular phenomenon such as ENSO, this may cause problems. Using coherence also does not provide

a framework for studying multiple processes at once, making it difficult to attribute heave variability to

individual processes. At 60m depth in the North Pacific we assumed that the coherence at 3-yr period

variability was associated with ENSO because our linear model showed a dominant ENSO signal at this

depth, but without the linear model it would be difficult to tell if that coherence was purely related to

ENSO. For the rest of our analysis, we continue to use the linear model because it is a simple way to

partition heave into contributions from seasonality, ENSO, and trends.
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Figure 5.6: (a) Coherence and (b) phase offset at a frequency of 1 cycle/3 yr at 60m depth. Coherence
was calculated between the reference location (0N,176E) (red circle) and every other location in the North
Pacific Argo data. A positive phase offset indicates that location experienced variability after the reference
location.

Coherent Equatorial Wave Patterns

Though coherence analysis has some limitations, when used in addition to a linear model it helps us visualize

wave processes and determine their causes. For the Argo heave data in the Equatorial Pacific, coherence

analysis finds coherent heave patterns at 1000m depth (Fig. 5.7a). This coherence is present for variability

with periods ranging from 6 months to 4.5 years. There are also clear, gradual phase offsets along the

Equator for all of these frequencies (Fig. 5.7b).

These propagating equatorial waves could be related to ENSO, seasonal variability, or many other types

of variability. Seasonal variability is a particularly likely candidate because preliminary examination of our

model results show zonal gradients in heave on seasonal timescales at depth along the Equator. These

results indicate that coherence analysis could be helpful for studying heave phase offsets in further detail.

Ultimately, using a wave view in addition to a linear model could be a more complete approach for describing

heave in the North Pacific than using a linear model alone.
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Figure 5.7: (a) Coherence and (b) phase offset at a frequency of 1 cycle/3 yr at 1000m depth. Coherence
was calculated between the reference location (0N,176E) (red circle) and every other location in the North
Pacific Argo data. A positive phase offset indicates that location experienced variability after the reference
location.

General Structures of Natural and Climatic Variability

The results from our linear model for heave are highly variable with location and depth, and often have

competing relationships with heave. Understanding the general structures of seasonal variability, ENSO,

and heave trends in the North Pacific is important for determining their influence on ocean measurements

and quantifying changes in the ocean. Though further analysis is required to understand these results in

detail, here we present some initial descriptions of the spatial variability of these three processes.

In the upper 100m of the ocean, seasonal variability is the largest contributor to heave on average in the

North Pacific. This corresponds to the seasonal subduction of warm surface waters, as discussed in Bindoff

and McDougall (1994). The seasonal heave signal is particularly strong at mid- to high-latitudes. Below the

surface ocean, seasonal variability is more heterogeneous and is mostly restricted to regions south of 20◦N.

From 100-300m depth, the West Equatorial Pacific has an inverse relationship with the seasonal cycle while

the East Equatorial Pacific maintains a positive correlation with the seasonal cycle. The phase relationship

between heave and seasonal variability also seems to change with depth. This may indicate the propagation

of waves across the Equator. Further investigation of these phase changes can provide additional insight into

deep Equatorial Pacific variability.

ENSO also explains a large portion of the heave variability in the Equatorial Pacific. The spatial structure

of ENSO-related heave changes dramatically with depth. In the surface ocean the entire equatorial region

experiences negative heave (warming) in the positive phase of ENSO, but at mid-depths the relationship
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between ENSO and heave in West Equatorial Pacific changes, and the region instead experiences upward

heave during El Niño. This is probably indicative of the shallowing of the zonal isopycnal slope that occurs

along the Equator during El Niño events. This zonal gradient along the Equator persists to about 1500m

depth along the eastern and western margins in the Equatorial Pacific. Some ENSO-related heave variability

persists to 1850m depth in the central Pacific near (8N,170W), but this is a localized phenomenon.

Heave trends in the North Pacific are smaller in magnitude than the seasonal and ENSO-related heave

on average, but the trends are what we are most interested in for quantifying ocean heat uptake. Downward

heave trends associated with gradual warming dominate at high latitudes; the heave trend is strongest at

the surface, but persists to 1850m depth. There are some regions at mid-latitudes that experience gradual

cooling. The region containing the Kuroshio Current has the most dramatic heave trends in the North

Pacific, but this region is influenced by ENSO and seasonal variability as well.

Overall it seems that partitioning heave into seasonal, ENSO, and trend components is useful, and digging

deeper into the regional variability of these processes can help us understand these processes’ influence on

heave in the North Pacific.

5.3.3 Linear Model Regional Variations

To better characterize seasonal variations, ENSO, and heave trends in the North Pacific, we identify three

coherent regions to study in further detail (Fig. 5.8). The first region is the East Equatorial Pacific (EEP),

located between 4◦S to 12◦N and 140◦W to 80◦W. The second region is the West Equatorial Pacific (WEP),

located from 4◦S to 4◦N and 120◦E to 180◦E. The third region is the High-Latitude North Pacific (HLNP),

ranging from 36◦N to 56◦N and 140◦E to 128◦W.

We select these three regions mainly because they seem to express different components of the model;

the EEP has a strong ENSO signal, the WEP has strong seasonal variability, and the HLNP has the most

significant heave trend. By fitting the mean heave timeseries in each region to our linear model at many

depths, we can better understand the regional variability of natural and climatic changes in the North Pacific

Ocean.
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Figure 5.8: [Left] The three regions chosen for examining the linear model of heave. [Right] Mean temperature
profile for each region. Colors correspond to like regions in both plots, for the East Equatorial Pacific (EEP,
yellow), West Equatorial Pacific (EWP, blue), and the High-Latitude North Pacific (HLNP, orange). Gaps
in spatial coverage are due to some locations being excluded for not having enough Argo data or having too
many temporal gaps.

The model fit in the EEP is high overall, though the fit gradually decreases with depth (Fig. 5.9). ENSO

is the strongest contributor to heave in the EEP, especially in the upper 750m of the ocean. Below 700m

depth, the heave in the EEP is explained mostly by seasonal variability. The sign of the association between

heave and the seasonal cycle reverses around 500m depth, which could be related to propagating equatorial

waves that are out of phase with the seasonal cycle. Heave trends are not very significant in the EEP.

In the WEP, the model has a poor fit in the surface ocean, but the fit increases with depth (Fig. 5.9).

There may be a process that greatly influences the surface ocean in the WEP that is not accounted for in the

model. Seasonal variability has the strongest presence in heave in this region, especially below 1000m depth.

Comparing the seasonal and ENSO variability in the WEP with the EEP reveals a sort of dipole structure

between the two regions, which likely corresponds to how the two regions are coherent but often experience

variability in opposite phases. Heave trends in the WEP also do not seem to be significant compared to

ENSO and seasonal variability.

The structure of heave in the HLNP differs from the heave in the equatorial regions in several ways.

Firstly, the HLNP has the best model fit at the surface, which is by seasonal variability and perhaps a small

heave trend. Below 200m depth, heave variability in the HLNP is small compared to the EEP and WEP;
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ENSO has a small contribution to heave in the HLNP, but mostly above 500m depth. Seasonal variability in

the HLNP is more prominent than ENSO but also decays with depth. However, heave trends explain over

half of the heave variability in the HLNP below 750m depth, and the model fit increases at the depths where

the heave trend is present. The prominent heave trend in this region may be due to the low stratification in

the HLNP compared to the Equatorial Pacific (Fig. 5.8), which allows for easier vertical heat exchange.

We thus expect the Equatorial Pacific to be primarily influenced by natural variability, and the High-

Latitude North Pacific to be influenced by long-term heaving trends associated with ocean heat uptake.

These regional variations are likely present all over the North Pacific and in other ocean basins; regional

heave analysis is therefore useful for gaining a more complete understanding of ocean variability.
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Figure 5.9: Depth-dependent linear model results for the mean heave timeseries from three regions: the East
Equatorial Pacific (EEP, top row), West Equatorial Pacific (WEP, middle row), and the High-Latitude North
Pacific (HLNP, bottom row). [Left] Model R2, where higher values indicate better model fit. [Center] Percent
of the heave variance explained by each model component, ENSO (blue), trend (red), and the seasonal cycle
(black). Higher percentages indicate higher contribution to heave relative to the other components of the
model. [Right] Slope associated with each model component. ENSO (blue) and seasonal (black) components
are in units of m heave/unit variance, while the trend (red) is in units of m heave/year.
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5.3.4 High-Latitude Heat Uptake

Out of the three regions we selected to study in detail, the high-latitude North Pacific experiences the most

significant heave trend. We therefore decide to calculate the heat uptake in the high-latitude North Pacific.

Ignoring the influence of salinity and pressure on heat content, we approximate the change in heat content

Q as

dQ

dt
=

(
ρ · C · dT

dd

)
· dd
dt

where ρ is the density of seawater (we used 1029 kg m−3), C is the specific heat of seawater (3850 J kg−1

C−1), dT
dd is the change in temperature per unit depth, and dd

dt is the heave trend that we calculated for

many locations and depths in our linear model (βT ). We calculate dT
dd for each depth interval using the mean

temperature profile in the high-latitude North Pacific, and the mean dd
dt across the region for each depth

interval. This yields a mean change in heat content at every depth in J yr−1 (Fig. 5.10).

We then integrate the heat content change across all depths and convert it to total heat uptake, which

we find to be 0.88 W m−2. 41% of this heat uptake occurs in the upper 200m of the high-latitude North

Pacific, while the remaining 59% occurs from 200-1800m depth. This heat uptake estimate is on the same

order of magnitude as previous estimates of heat uptake in the upper 2000m of the Pacific Ocean (Roemmich

et al., 2015; Desbruyères et al., 2017).
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Figure 5.10: [Left] The heave trend (βT ) and [Right] the change in heat content averaged across the high-
latitude North Pacific region as a function of depth. Change in heat content integrated with depth to yield
heat uptake in the upper ocean (0-700m) and intermediate ocean (700-1800m).

5.4 Discussion

Using our novel method for calculating heave, Dual-Dynamic Depth Warping, we successfully converted the

Argo data in the North Pacific into a format where we could observe natural and climatic influences on

the ocean. Using a linear model and coherence analysis, we detected large-scale natural variability in the

heaving of isopycnals associated with ENSO and seasonal changes. We identified regional variability, such

as coherent wave patterns in the deep Equatorial Pacific. We were also able to use heave to describe the
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seasonal cycle, ENSO relationship, and gradual northward migration of the Kuroshio Current. Finally, we

quantified long-term heaving trends in the high-latitude North Pacific, converted these heaving trends to

heat uptake, and detected positive heat uptake in the upper 2000m of the high-latitude North Pacific.

These results demonstrate the importance of quantifying regional variations in how natural and climatic

processes influence ocean observations. This analysis shows potential to model how various atmospheric and

oceanic processes contribute to heave, on the scale of individual currents to entire ocean basins. Although

our simple heave model did not account for every source of heave variability in the North Pacific, and there

was some indication that is missed an important surface process in the West Equatorial Pacific, this model

was a good first step in partitioning heave into contributions from natural and climatic processes. This

model allowed us to study relatively complex heave structures at many locations and depths in the North

Pacific.

Future work should examine additional types of variability that are likely to influence heave in the North

Pacific, as well as the spatial variability of ocean heat uptake. Using Argo data with higher depth resolution

would also be helpful for capturing the full structure of heave in Argo, especially from 1000-2000m depth.

The Argo product we used had a depth resolution of 100m below 1000m depth, which we interpolated to 4m

depth resolution; this likely reduced the amount of heave variability we were able to detect. Higher-resolution

Argo data at depth could be especially useful for studying equatorial waves.

Another logical next step would be to apply this analysis to the global Argo dataset, to study the structure

of climatic and natural variability in the global ocean. However, there may be some obstacles to extending

this analysis to other ocean basins. For example, basins with complex topography could influence heave

signals and obscure dynamical changes in heave. Regions that frequently experience horizontal advection

also pose problems for vertical heave analysis, though we hope to eventually improve our Dual-Dynamic

Depth Warping technique to account for horizontal heave. These potential issues should be considered when

implementing this analysis across the global ocean.

The greatest limitation in this Argo heave analysis is that the global Argo data do not measure the deep

ocean. While calculating heat uptake in the upper 2000m of the ocean is useful, deep ocean data is needed

to quantify ocean heat uptake and predict future consequences (Li et al., 2013). This is an important reason

to support the establishment of a global deep-Argo array. Until then, however, we can compare these Argo
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results to other datasets, such as the TAO array and ship-based measurements. This could potentially help

us extrapolate the variability of heave from the bottom of the Argo depth range into the deep ocean.
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Chapter 6

Conclusions and Future Directions

This work presented a new method for measuring isopycnal heave called Dual-Dynamic Depth Warping,

which used temperature and salinity measurements rather than the conventional use of potential density

to quantify changes in the ocean. This novel method for calculating heave outperformed the conven-

tional density-based methods in synthetic tests, especially for vertical profiles with low stratification and

noise. Dual-Dynamic Depth Warping could also distinguish between vertical heave and horizontal advection,

whereas density-based methods for calculating heave often mischaracterized lateral water mass intrusions as

vertical heave or missed the change altogether.

Future work will test Dual-Dynamic Depth Warping further with different ocean profiles and optimize

the weighting between temperature and salinity to measure heave accurately in a variety of stratifications.

We also plan to adapt Dual-Dynamic Depth Warping to calculate heave in three dimensions. Treating heave

as a three-dimensional process would not only allow us to quantify heave in regions with significant lateral

advection, but it would also provide a more complete description of ocean variability.

However, Dual-Dynamic Depth Warping has already shown several advantages over conventional methods

for calculating vertical ocean changes. This novel method has great potential to transform existing ocean

datasets into a form that reveals more about the workings of the interior ocean than has been previously

detected. We used Dual-Dynamic Depth Warping to characterize heave in station data from Hawaii and

Bermuda, and found teleconnections to global climatic processes and evidence of seasonal and interannual

variability in the deep ocean. These results align with previous findings about deep-ocean variability, and

demonstrate the capacity of the deep ocean to respond to short-term changes. Resolving these short- and

long-term changes in the deep ocean is critical for quantifying ocean heat content.

This work also provided the first Hawaii Ocean Timeseries/Argo comparison, where we found agreement
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between heave estimates in the two datasets. This correspondence indicated that our analysis could be

applied to the Argo dataset, thus expanding the potential scope of our analysis to the global ocean. Our

results from using heave to measure natural and climatic changes in the North Pacific Argo data were

promising. Using a simple linear model, we distinguished heave trends from seasonal and El Niño-related

variability, and converted these heave trends to ocean heat uptake.

Future work should continue using heave trends to quantify ocean heat uptake in the Argo data, and

explore nonlinear trends in ocean heat content. We recommend using both coherence analysis and a linear

model to study ocean variability, especially in regions known to have coherent wave patterns, such as the

Equatorial Pacific. Extending our analysis to Argo data in other ocean basins may be challenging due to

variations in topography and horizontal advection, but comparing heave estimates in Argo to other datasets

such as stations and ship-based measurements could help us verify our Argo heave estimates, as we did with

the Hawaii station in this study.

The ultimate goal of this work is to develop a global climatology of heave, to understand how climatic and

natural processes influence ocean observations in all regions of the world. Constraining heave and identifying

the processes that cause heave allow us to not only observe how the ocean is changing, but also understand

the drivers of variability in every corner of the ocean. Quantifying vertical heave in the North Pacific Argo

data was a first step in this process. We plan to extend our analysis to the existing global Argo dataset.

The frequent monitoring of the interior ocean provided by Argo has been shown to be crucial for quantifying

both natural and climatic changes in the ocean, and our understanding of interior ocean variability will only

improve with the expansion of the Deep-Argo program. Understanding the interior ocean in this much detail

gives us more power to study changes in ocean circulation, constrain ocean heat content, and predict the

broader impacts of ocean heat uptake in this warming climate.
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